
Spectrum Analyser
Instructions

Home page: https://colourclash.co.uk/spectrum-analyser/

Introduction
Spectrum Analyser is a tool that is designed to help reverse engineer ZX Spectrum games &
programs.
It is a combination of an emulator, debugger & interactive disassembler. Programs are
loaded and run in the emulator and their state can be inspected using the tools provided.
These tools include:

● Disassembler
● Debugger
● Graphics viewer
● Frame trace
● Memory diff
● IO analyser

The analyser maintains a representation of the program which is the results of analysing
what is run as well as comments and other input by the user. This representation can be
exported as a .skool file to be used with skoolkit (www.skoolkit.ca) or an assembler file.

Acknowledgements
This program was built using the superb Chips emulator library by Andre Weissflog, the
emulation in the analyser is done using this library: https://github.com/floooh/chips

For the UI I used DearImGui (https://github.com/ocornut/imgui) which is without doubt one of
the greatest pieces of open source software. Without it not not only would the UI take much
longer but working on it would also be exceedingly dull.

https://colourclash.co.uk/spectrum-analyser/
http://www.skoolkit.ca
https://github.com/floooh/chips
https://github.com/ocornut/imgui


Getting Started

Building

cd Source/ZXSpectrum
mkdir build
cd build
cmake ..
Then for Linux/Mac:
make
For windows a solution will be built in the build folder

Running
The first time you run Spectrum Analyser it will boot to the ZX Spectrum ROM and a
globalconfig.json will be created in the working dir.
Edit the following fields in the globalconfig.json file:
"WorkspaceRoot": "path/to/workspace"
"SnapshotFolder": "path/to/snapshots"
"PokesFolder": "path/to/pokes"
The workspace folder is where the analysis files will be stored.
The snapshot folder is where you store your games (.z80, .sna)
The pokes folder is where your .pok files are stored

Code Analysis Window
This window is where the bulk of the analysis takes place.



Main View
The main view covers that address range of the ZX Spectrum and has both code and data
items.
Address labels can be hovered over to peek at their contents or double clicked on to jump to
the location.

Detail View
The details view will show extra information on the selected location and is the pane in the
top right of the above screenshot.
Information about what is accessing the selected item can be found here.
For data items you can see what is reading and writing the value as well as how the value is
changed.
For code items you can pick the operand type to customise how the disassembly is
displayed. You can also ‘NOP’ out instructions so see how the behaviour of the program
changes when the instruction is removed..



Functions

This lists all the globally declared functions and the use can jump to them by clicking on
them. They can also filter the list.

Data

Similar to the function list, this is where all the globally declared data is listed and it can be
filtered in the same way.



Format

This is a tool which allows the user to format an area of memory in terms of how it is
visualised.
‘Start Address’ is the starting point of where you want to format.
The data type is the type to format. You can then set the number of items of that type.
You can clear the region of labels or code if you want (by default the operation won’t override
code)
The ‘Format’ button will then format that data region. ‘Format & Advance’ will format a region
and then move the start address to after the formatted region, this is handy for formatting
consecutive items in memory.
You can also add labels to the start of each item by using the ‘Add Label at Start’ check box.

Keys

Debugger
● F5 - Break/Continue
● F10 - Step Over
● F11 - Step Into
● F6 - Step Frame

○ This will make the program run for a frame
● F7 - Step Screen Write

○ This will make the program run until the next screen write operation
● F9 - Add/Remove breakpoint

Program Annotation
● D - Set item data

○ Toggles between db & dw
● T - Set Item text



● C - Set item code
● B - Toggle item binary representation
● L - add label
● R - rename
● / - set single line comment
● ; - create multi-line comment

Spectrum View

This is where we can see the game running. We can also use it to obtain information on
what’s being displayed such as:

● Finding which instruction wrote a pixel by left double clicking on the on-screen pixel
● Finding which instruction wrote the attribute of a character by right double clicking on

the character on-screen.
● Finding an onscreen character image elsewhere in RAM. The character is selected

by clicking on the screen character, a search will be done in RAM and if the character
is found then the address will be displayed. The found character can also be
formatted as bitmap data in the code analyser view.



Graphics Viewer

This view is used to find the graphics in a game. It draws the memory graphically using
various visualisation modes:



● Character
○ A column based character view. Most games seem to store their sprite and

other graphics this way. The character width can be adjusted for graphics
which have a width of 16,24,32 etc.

● Character Winding
○ Some games seem to store their characters in a left->right->left winding

pattern.
● Screen

○ This is will draw memory in the same way the screen is drawn

Frame Trace



When the program is running the state of the last 300 frames is recorded. At any point you
can scrub across this timeline and for each frame get an instruction trace as well as see all
the screen writes.
Execution can be resumed from a previous frame. Memory between frames can also be
diffed.


